Delta Modeling Workflow

Michiel Helvensteijn
CWI, Amsterdam, The Netherlands
Leiden University, The Netherlands

michiel.helvensteijn@cwi.nl

ABSTRACT

In previous work we show how abstract delta modeling can
be used to model product lines. The formalism assigns a
functional meaning to features from a feature model and
provides a novel mechanism for resolving implementation
conflicts without code duplication or overspecification. But
in the vast expressive space of delta modeling, it may not
be clear to a developer how to create a product line from
scratch. The formalism was descriptive rather than prescrip-
tive. To that end, we propose a development workflow based
directly on Abstract Delta Modeling. We show preservation
of global unambiguity and completeness in the product lines
resulting from this workflow. We also show that the work-
flow naturally supports concurrent development.

1. INTRODUCTION

A software product line (SPL) (or software family) is a set of
software systems, called software products, with well-defined
commonality and variability [5, 15]. In software product
line engineering, SPLs are developed by structured reuse
in order to reduce time to market and to increase product
quality. Automated product derivation generates individual
products from the product line artifacts by a mechanical
process which requires no human intervention by virtue of a
sufficiently expressive code base.

Different software products are distinguished from each
other by which features they provide. Which feature combi-
nations (or feature configurations) are supported in an SPL
is expressed by feature models [11, 21]. Features can be de-
scribed as designated product characteristics or increments
of product functionality [1]. A product is uniquely identi-
fied by a valid feature configuration. On the feature model
level, features are merely labels [6]. In order to mechani-
cally derive a product for a particular feature configuration,
the code base has to be designed with a clear link between

*This research is funded by the EU project FP7-231620
HATS: Highly Adaptable and Trustworthy Software using
Formal Models (http://www.hats-project.eu)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VaMoS ’12 January 25-27, 2012 Leipzig, Germany

Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

features and code. It is important that all possible products
can be generated from a trivial composition of this code.

A recently proposed method for organizing a codebase in
such a way is delta modeling [16, 19, 17, 18], wherein the
code-base is split up into deltas, which can modify a core
product. Deltas would be annotated with an application
condition, stating for which feature configurations a given
delta should be applied. At the time, application conditions
to annotate a delta with more than one feature were novel
compared to other known approaches, in which there was a
one-to-one relation between code modules and features [1].
Later work [17] introduced a partial order on deltas as a
limited means of avoiding conflicts between deltas which do
not commute.

Clarke et al. [3] abstract away from software and gen-
eralize the concepts of delta model and product line in an
abstract algebraic setting, known as Abstract Delta Model-
ing (ADM). In this work conflict resolving deltas were intro-
duced to make full use of the partial order between deltas.
Rather than avoiding conflicts, conflict resolving deltas can
be applied after a conflicting pair of deltas to ‘equalize’ the
two possible orderings between them, i.e. make them com-
mute again. The absense of unresolved conflicts leads to a
single unambiguous product for each feature configuration.
The paper also introduced efficient conditions for checking
the unambiguity of a product line as a whole.

But whereas [3] shows what is possible with abstract delta
modeling, it has not yet been described what is recommended.
If a team of developers started out with only a feature model,
how would they actually build and organize the product
line? How should the deltas be ordered and what should
their application conditions and content be if they want to
maximize reuse of code and isolated, concurrent develop-
ment of features?

We now propose a specific development workflow for ADM,
dubbed Delta Modeling Workflow (DMW). The structured
and flexible nature of ADM lends itself quite naturally to a
systematic approach to building product lines. This paper
stays at the same level of abstraction as [3] but approaches
the topic from the other side. It gives a step-by-step guide
to building a product line from scratch (Figure 1). Following
this workflow will lead to a well-structured product line that
automatically exhibits two desirable properties. The first of
these properties is the global unambiguity of the product
line as described in [3], i.e. for every feature configuration,
there is only one product (which requires all conflicts to be
resolved). The other property is product line completeness:
the property that every generated product satisfies the spec-

feature
E— (=) to im-
plement?

none

implement

feature f
with new
delta =

interaction }mplem(?nt
(=) to im- I interaction
plement? I with new
delta z
none |
conflicts resolve C
(=)t C conflicts
none o with new
resolve?

delta z

Figure 1: Overview of the development workflow

ifications of the features that it is supposed to implement.
This includes specifications for desired feature interaction.
Take, for instance, the example given in [14] of a database
management system. If both ‘transactions’ and ‘logging’ are
included, it is required that the transactions are also logged,
functionality that goes beyond the sum of both individual
features. We also show that the workflow always terminates
and that it supports concurrent development, i.e. that mul-
tiple developers can work on parts of non-trivial product
lines at the same time and in isolation without breaking
global unambiguity or completeness.

This paper is organized as follows. Section 2 summarizes
the relevant theory from Abstract Delta Modeling [3]. Sec-
tion 3 extends that theory by enriching product line speci-
fications and separating them from product line implemen-
tations. They respectively form the input and output of
the development workflow we describe in Section 4, which
is the main focus of this paper. In Section 5 we analyze
the workflow and show the beneficial properties it exhibits.
Section 6 describes a shortcoming of the workflow, and pro-
poses the solution of parametrized deltas. Section 7 shows
both standard and parametrized deltas in a brief but con-
crete example. Finally, Section 8 discusses related work and
Section 9 concludes the paper.

2. PRELIMINARIES

To make this paper self-contained, we now repeat the rele-
vant theory from ADM. For more detailed information, we
refer the reader to [3]. Readers familiar with the theory can
skip this section.

2.1 Products and Deltas

Firstly, we assume a set of products P, which includes possi-
ble core products, intermediate products and end-products.

Secondly, we have a set of deltas D, each describing a
product modification. D forms a monoid, together with se-
quential composition operator - : D x D — D and neutral
element e. Deltas z,y € D are called non-commutative if
Yy-xF£x-y.

Applying a delta to a product results in another product.
Delta application is a function —(=) : Dx P — P. If d € D
and p € P, then d(p) € P is the product resulting from
applying delta d to product p.

2.2 Delta Models

A delta model is a tuple (D, <), where D C D is a finite
set of deltas and < C D x D is a strict partial order on D.
r < y states that x must be applied before y, though not
necessarily directly before. It represents the intuition that a
delta applied later has full access to earlier deltas and more
authority over modifications to the product.

A derivation is a delta formed by the sequential composi-
tion of all deltas from a delta model. Given a delta model
DM = (D, <), its derivations are defined to be

| T1i,...,%n IS a linear extension
T X1
" of <, where {z1,...,2,} =D

Note that it is possible for a delta model to generate more
than one distinct derivation since non-commutative deltas
may be applied in different orders. We do strive for a unique
derivation, however, as this corresponds to deriving a unique
product. To allow for an efficient way to establish this prop-
erty, we rely on notions of conflicting deltas and conflict-
resolving deltas.

2.3 Conflicts

Two deltas are in conflict, denoted x # y, if they are non-
commutative and not ordered by <. The changes they de-
scribe are incompatible, and neither can override the other.

It is not a problem for a delta model to have conflicts,
if they are later resolved by a third delta. Given deltas
xz,y € D which are in conflict, we say that a delta z resolves
their conflict, denoted (z,y) < z, iff

xr<z ANy<z AVdeD*:z-d-y-x=z-d-xz-y.

where D* contains all finite sequential compositions of deltas
from D.

A delta model is unambiguous if it contains a conflict-
resolving delta for every conflicting pair of deltas:

Ve,ye D:xfy=3z€ D:(x,y) <z

If a delta model is unambiguous, it has a unique derivation.

2.4 Product Lines

We introduce a finite set of features F relevant to a spe-
cific product line. These features have no inherent semantic
meaning. The set of products in a product line can be rep-
resented by a feature model ® C (F), where each F' € ®
corresponds to a valid feature configuration.

To bridge the gap between features and product line arti-
facts (such as code), we introduce application conditions for
deltas. An application condition attached to a delta deter-
mines for which feature configurations the delta has to be
applied. An application function v : D — P(P(F)) gives

the feature configurations each delta x € D is applicable to.
~(x) is the application condition for delta x.

A product line is a tuple PL = (®,¢, D, <,), where ® is
a feature model, ¢ € P is the core product, (D, <) is a delta
model and + is an application function with domain D such
that Vo € D : y(z) C ®. So the product line describes all
possible products, and how to generate them.

Given a feature configuration F' € ®, we can extract the
corresponding products prod(PL, F') out of a product line.
To do this, we first extract its selected delta model (D', <")
where D' = {de D | F €~(d)} is the set of applicable
deltas, and <’ is < restricted to D’. We can then apply its
derivations (as there may be more than one) to core product
c. The result is a set of generated products.

Of course, we’d like a product line in which every selected
delta model is unambiguous, since this means that every
feature configuration leads to a unique product. An efficient
way of checking this on the level of the product line itself is
the following: For any two conflicting deltas = and y that
can be applied together, there must be a conflict-resolving
delta z applicable in at least the same set of feature config-
urations. This makes a product line globally unambiguous.
The following is a more precise description of this property:

Vz,y € D :
V¥ =g V zby=3z€D: (V" Cv(z)A(z,y) < 2)

where

VoY = y(z) Ny(y)

A globally unambiguous product line has only unambiguous
selected delta models. This is one of the important proper-
ties we want to maintain with the workflow (Section 4).

3. PRODUCT LINE SPECIFICATION

In this section we enrich the specification of product lines
and separate it from the implementation.

The specification is what the developers start off with
when they design the product line. The workflow we de-
scribe assumes it as input. A product line is now represented
as (®,¢, D, <,~). In this representation, the feature model
d constitutes the specification. The rest is implementation.

3.1 Structural Feature Model

Feature models as we have represented them so far are not
particularly useful for developers. When we view a feature
model as the set of all possible feature configurations, we
disregard the intended hierarchical relations between fea-
tures. So if we start from a traditional feature model [11,
20, 21], we lose some useful information in the ® represen-
tation. For instance, we lose the distinction between the
two feature models in Figure 2, which would both have
® = {{f.9},{f.9:h}}.

Since the feature diagram notation from Figure 2 is quite
common in product line engineering [20], it is a much more
convenient structure to base our workflow on.

So we introduce a structural feature model ¥. It is a 5-
tuple (B,—e,—o,®, »), where B C F is a set of mandatory
base-features, —e C F x F is the mandatory subfeature
relation, —o C F X F is the optional subfeature relation, & C
F x F indicates those features that may not appear together
in one feature configuration and » C F x F indicates which
features require which others. The symmetric closures of
—e, —o, @ and » must be disjoint.

Figure 2: Two different feature diagrams represent-
ing the same feature model ® = {{f,g},{f,9,h}}.

This new representation is able to distinguish the two fea-
ture models shown in Figure 2: ({f},{(f,9)},{(f,h)},2,2)
and ({g},{(g, /)},{(g,0)},2,2).

It is a simple matter to recover the original feature model
® from ¥ = (B,—e,—o,®, ») as follows, where f,g € F:

VfeB:feF
Vf—eg:feF<=gecF
P=(FCF|Vf—©o0g:feEF<—geF
Vo f@gif¢FVgér
V frg:feF=g€eF

We will continue to use ® under these semantics.

You may notice that —o and » have nearly the same
semantics. However, since they reflect different intentions,
we treat them differently in the workflow.

3.2 Feature Specifications

In reality, a feature is more than a label. It represents some
functionality we want a product to have. In industry, there
may be informal descriptions or use-cases describing what a
feature is supposed to do. In a more academic setting, there
may even be formal specifications. In any case, we assume
that there is some way to determine whether or not a given
product actually implements a certain feature. Since we are
working on an abstract level, we cannot go into detail on
what this determination may entail. We cover it with the
following feature satisfaction relation. For p € P and F' C F:

pEF

indicates that product p satisfies the specifications of (the
combination of) the features in F'. When we want to express
that product p satisfies the single feature f, we write p F {f}.
We take as an axiom the fact that for p € P and F,G C F:

pEFUG = pEFAPEG

Recall that sometimes we want a combination of features in
a product to expose extra functionality. Functionality that
would not be present if any strict subset of those features
was included. So the reverse of the axiom is not always true.
If p EF Ap EG, the combined functionality between F' and
G may not yet be implemented in p. When the features
between I and G should offer no combined functionality,
the reverse of the axiom holds for that specific case.
The specification of a product line now consists of:

(¥, F)
And its implementation consists of:

(C7D7 <”y)

Our workflow takes the former as input and produces the
latter as output.

4. DEVELOPMENT WORKFLOW

The goal of this workflow is to start with a complete product
line specification and implement from this a complete prod-
uct line by implementing all features, resolving all conflicts
and implementing all desired feature interaction in an itera-
tive process, maximally exploiting parallelism in the devel-
opment. We now describe the process illustrated by Figure 1
in detail.

Before we begin, we define a few useful notations. First,
the meaning of delta ideal, the set of all deltas smaller than
or equal to a given delta in the partial order, which will
be useful to describe local properties during the workflow
(as local in a delta model refers to a delta and all deltas it
‘knows’). Given a delta model (D, <) and delta z € D, we
define the delta ideal as follows:

Dy = {yeD|y=<aVy=u}
The product generated by applying the sole derivation of
(D<s,=<") (assuming there is only one; where <’ is < re-
stricted to D<) to core product c¢ is denoted prod(z). The
non-reflexive transitive closure of —e U—o is denoted —o*.

In the workflow, we start with a product line specification
(I, E) as input and introduce an empty ‘current product line
implementation’ PL = (¢, D, <,7) where D = <=~ = &.

c is taken to be some empty product 0. This is not abso-
lutely required, and it is possible to implement mandatory
features in the core product. However, optional features
should never be implemented in the core product (with the
intention of selectively ‘removing’ them with deltas) as this
is incompatible with the workflow and can be said to be less
flexible and robust. In any case, assuming c to be the empty
product simplifies the following workflow description.

We will add elements to D, < and v as we implement
features from ¥. For each feature f we implement, we have
to implement any desired interaction in which f is involved
and then resolve any conflicts introduced by implementing
f and its interactions.

We also maintain a set of locks which starts empty and
is updated whenever a developer chooses to start writing an
implementation. It can be subdivided into feature imple-
mentation locks Ly C F, interaction implementation locks
L; C #Z(F) and conflict resolution locks Lc C D. These
‘locks’ are never released. They simply indicate that some
developer following the workflow has made the commitment
to implement a specific part of the product line, so no one
else should try to implement the same part.

We now explain and formalize all steps in the workflow.
The following subsection headers refer to the nodes of the
Figure 1 flowchart. Note that all diamonds in the flowchart
are about deciding which part of the product line to imple-
ment next (Sections 4.1, 4.3 and 4.5) and the rectangles are
about the actual implementation (Sections 4.2, 4.4 and 4.6).

4.1 Feature (-) to implement?

In this stage, we choose the next feature to implement. The
choice is made by following the partial order introduced by
—o™. Basically, given a feature diagram, we work on it in
a topological order from top to bottom, implementing first
the base features and then their subfeatures. This is be-
cause deltas implementing subfeatures often need to make

assumptions about — and changes to — the implementation
of the base features.
So, choose an f € F such that:

e all dependencies have been implemented:
Vg—o"f:3d e D:vd)={Ged|geG}

e this feature has not been locked yet: f & Ly

Upon choosing f, Ly has to be updated to include it. Per-
forming the above tests and then updating Ly is assumed
to be an atomic operation. This is so different developers
can develop different features concurrently and in isolation.
Many features can be worked on simultaniously, so long as
they are independent (Section 5.4).

If there are no more features to implement (L; = F),
and for each previously implemented feature, the steps were
properly followed, there is no more work to be done.

4.2 Implement feature f with new delta =

In this step, having chosen a feature f, we need to develop
a new delta x € D to implement it. This delta has to be ap-
plied only when f is selected. So, v(z) ={F € ® | f € F}.
Its place in the partial order < should mirror f’s place in the
feature diagram. So, it should be greater than the delta that
implements its superfeature and incomparable to all other
deltas currently present. In fact, the deltas that implement
features, linked by the transitive reduction of <, will form a
graph that is isomorphic with the feature diagram.

The delta has to be designed such that the following local
guarantees hold:

e Delta x should implement feature f, so: prod(z) F{f}

e Delta z should not break existing features, so:
Vw < x : prod(w) E{g} = prod(z) F{g}

In working on x, it is not necessary to consider possible con-
flicts, since there will be an opportunity to resolve them later
in the workflow. (It will help, of course, if code is written in a
modular way, which lends itself better to conflict resolution
in the future. This depends on the concrete domain of the
deltas and products.) Note that may assume and use the
implementations of superfeatures of f, but also those of re-
quired features g such that f » g. This may be a motivation
to implement those g before f, but it is not a requirement
of the workflow, since x cannot change anything from the g
implementation.

4.3 Interaction (-) to implement?

At this point, we need to know if by introducing feature
f, there are now sets of features that require extra work to
make them interact properly. In other words, we now select
the smallest feature set I C Ly with f € I that is a subset
of some valid feature configuration in ® such that:

e the features in I should interact:
EIpEP:p #I/\HILIQ31211U12Ap'311/\p'312

e this interaction has not been locked yet: [& Ly

If there is no such I, we proceed to Section 4.5. After choos-
ing a suitable I, we record it in L;. As before, performing
the above tests and then updating L; is assumed to be an
atomic operation, so different interactions I can be imple-
mented concurrently and in isolation (Section 5.4).

We will implement interaction I in the next step. Note
that during several iterations of implementing feature inter-
action, we may deal with many overlapping feature-sets.

Ay L dy L dy
Cdy L ds L dg
e SR '~

Figure 3: Example product line with a three-way
interaction implementation or conflict resolution.
The dashed boxes are deltas. The partial order < is
represented by the arrows and each delta z € D is
decorated with a propositional logic formula repre-
senting its application condition ~(z).

4.4 Implement interaction 7 with new delta -

Given a set I of features whose interaction we need to imple-
ment, we develop a new delta z € D to do just that. z has to
be applied exactly when the features from I are selected. So,
v(z) ={F €®|ICF}. Itshould be greater in the par-
tial order < than the deltas that implement its individual
features, as well as the deltas that implement interactions of
strict I subsets.

The delta z has to be designed such that the following
local guarantees hold:

e z should implement the interactions between the fea-
tures in I, so: prod(z) F I

e Delta z should not break existing features, so:
Vw < z : prod(w) EG = prod(z) EG

After applying this step four times to implement the interac-
tion between hypothetical features f, g and h, the resulting
product line may look something like Figure 3.

4.5 Conflicts (-) to resolve?

After implementing our feature and any desired interaction
related to it, we now look for any conflicts y1 £ yo we might
have introduced in this iteration. We have to consider con-
flicts involving delta x, all deltas z we used for implementing
desired interaction and all deltas z we used for resolving ear-
lier conflicts this iteration.

Formally, a conflict occurs between two deltas. However,
when a there is a set of deltas with many (related) conflicts,
we will also want to introduce conflict-resolving deltas for
larger sets with a non-empty joint application condition, so
we eventually cover all combinations.

So we now find the sets C C D with the widest (largest)
joint application condition (e v(d)) € ® such that:

e all deltas in C' are in unresolved conflict:
|C‘ 22/\Vy16023y2602y1=y2\/
yify2A—-3z €D : (y1,y2) < 2

e this conflict set has not been locked yet: C' & L¢

From those, we select the C' with the largest number of
deltas. We choose the widest joined application condition
so we eventually handle all relevant cases. We then choose
the largest set, because this is required for termination of the
workflow (Section 5.1). Having made the choice, we record
C in Lc. We again assume that performing the above tests
and then updating L¢ is an atomic operation, so conflict-
resolving deltas for different conflict sets C' can be imple-
mented concurrently and in isolation (Section 5.4).

If no conflicts are left to resolve, we can start a new iter-
ation of the main loop.

4.6 Resolve ¢ conflicts with new delta -

Given a set of deltas C' with conflicts we need to resolve,
we develop a new delta z € D to do it. Its application
condition reflects the joint application condition of C. So,
7(2) = Ngec 7(d). Tt should be greater in the partial order
=< than all deltas in C.

The delta z has to be designed such that the following
local guarantees hold:

e z resolves all conflicts: Vy1,y2 € C : (y1,y2) < 2

e 2 does not break existing features, so:
Vw < z : prod(w) FG = prod(z) EG

After applying this step four times to resolve the conflicts
between three hypothetical deltas di, d2 and ds, the result-
ing product line may look something like Figure 3. In this
way, interaction implementing deltas and conflict resolving
deltas are quite similar. For a concrete example, see Sec-
tion 7.

S. ANALYSIS

We now analyze the workflow above. It is inherent in the
field of engineering that we cannot give small, algorithmic
steps for this creative process, and it requires the developers
to ‘design delta z such that ... But we gave formal con-
straints so we can still prove several important properties
about the process. The developers have to satisfy only local

constraints in order to benefit from global properties.

5.1 Termination

First, we show that the workflow eventually terminates. There
are only three loops that may be sources of divergence. They
are visible in the flow-graph of Figure 1.

The first inner loop, which implements all necessary fea-
ture interaction, will terminate when there are no more se-
lectable feature-sets which should interact, but for which the
interaction has not been locked. Since there are only a finite
number of feature-sets, and after choosing such an interac-
tion set, it is immediately locked, this loop will terminate.

The second inner loop, which resolves all remaining con-
flicts, will terminate when there are no more conflict sets left
unlocked. Every conflict set that is detected is locked right
away and resolved in the next step of the workflow. But do-
ing so adds a new delta z that may itself be in conflict again.
However, each new z will have increasingly restrictive appli-
cation conditions A(z) = [e A(d), and be greater than the

conflicting deltas in the partial order. This being the case,
and because the set C is always chosen as large as possible
given a widest joined application condition, there will even-
tually be a z that introduces no new conflicts. In the most
extreme example, we could end up with a delta z greater
than all other deltas in the partial order so there can not be
a delta left in conflict with it.

The outer loop visits all features in the feature model once.
Since the feature model is finite, this loop must terminate
as well.

5.2 Global Unambiguity

Next, we are interested in the following property over any
generated product line PL:

VF € ®:|prod(PL,F)| =1

It specifies that for every feature configuration, we can gen-
erate a unique product. As proved in [3], this property is
guaranteed if PL is globally unambiguous. We now show by
induction that product lines generated using the workflow
of Section 4 are always globally unambiguous.

The workflow starts with the empty product line imple-
mentation (0,d, &, &). This product line is trivially unam-
biguous, since D is empty.

Then we assume that we have a globally unambiguous
product line implementation (¢, D, <,) at the start of a new
iteration. A new delta is introduced to implement the new
feature, then a (possibly empty) set of deltas implementing
desired interaction, then a (possibly empty) set resolving
conflicts. The second inner loop of the workflow terminates
only when there are no longer any unresolved conflicts in-
volving any of those deltas, since a new delta z is always cre-
ated to resolve any detected conflict set. Section 5.1 shows
that this loop always terminates. By the induction hypoth-
esis, all conflicts not involving those deltas were already re-
solved before this iteration. So each iteration of the main
loop results again in a globally unambiguous product line.
And then so does the application of the whole workflow.

5.3 Complete Product Line

A product line is complete if every valid feature configuration
has a corresponding product that actually implements the
required features:

VF € ®:3pe€prod(PL,F):pEF

We want to show that this property holds for any product
line generated with the workflow of Section 4.

5.3.1 Non-interference

Let us first consider a simple setting with the following two
properties:

e No two features are supposed to interact:
VpeP:VEEGCF:(pEFApEG) = (9 FEFUQG)

e All deltas implementing these features will be
commutative: Ve, y € D:x-y=y-x

Here, we already run into a problem. The workflow step of
Section 4.2 enforces the local constraint that the new delta
does not break any superfeatures. It says nothing, however,
about not breaking any other features. If we want to achieve
product line completeness by construction, developers would
need to give more than just local guarantees.

This motivates the restriction of non-interference on the
product set P, monoid (D, -, €) and feature satisfaction re-
lation F. The restriction holds if two commutative deltas
cannot break each others features:

Vp€eP:Va,y,z€D:VF C F:
(- y=y)N ((z-2)p) FF) = ((z-y-2)(p) FF)

Systems that may break this restriction may include deltas
that can add advice in aspect oriented languages or features
whose specifications are mutually exclusive. We assume non-
interferent systems from here on.

5.3.2 Completeness for Non-interferent Systems

We can now show that in our simple setting described above,
any resulting product line is complete. Each delta is devel-
oped such that it implements its own feature and does not
break superfeatures. By non-interference, they also do not
break features from the other deltas, as all deltas commute.
No feature interaction is required, so this is sufficient.

Now we look at a setting without the first of the above
properties. That is, features may now require extra imple-
mentation to interact. In that case, the main loop may im-
plement all individual features properly, but completeness
requires that the product implement all interaction as well.
If there are such interactions to be implemented, they will
be detected and implemented by the first inner loop of the
workflow. These implementations are also sure not to break
any superfeatures. Without conflicts, this is sufficient.

Lastly we look at a setting in which conflicts may also
appear. If two deltas are not ordered and do not commute,
they may break each others features, even in non-interferent
systems. However, each conflict is resolved by a conflict
resolving delta that makes the two deltas commute, so non-
interference applies again. And the conflict resolving deltas
are sure not to break any superfeatures.

5.4 Concurrent Development

Finally we explain why this workflow is suitable for concur-
rent development. Mainly it is made possible by the work-
flow’s directive to develop each feature independently of the
features unrelated to it, without having to consider possi-
ble conflicts between the implementations. The developers
have the opportunity to work on features uninterrupted, and
then to collaboratively develop a conflict resolving delta to
reconcile any conflicting implementations.

At each choice in the workflow (Sections 4.1, 4.3 and 4.5),
the process can ‘fork’ with multiple people implementing dif-
ferent parts of the product line at the same time. The locks
in Ly, Ly and Lc prevent the same work from being done
more than once. Deadlocks cannot occur, since no one has
to wait for locks to be released. The locks are meant to no-
tify others that a specific piece of work has already started.
Even if necessary implementations are skipped because they
are already locked, all work is sure to get done because the
holder of the lock will still be directed to implement all de-
pendent functionality.

Note that the entities walking the flowgraph concurrently
need not be specific people or teams. A ‘thread’ of work
may be handed over to different developers at any time.
The reason for even speaking in terms of the flowgraph is
to make sure that no required implementation is forgotten,
e.g. that no conflict is left unresolved or interaction left
unimplemented.

For example: take two teams, both in their own ‘thread’
in the flowgraph, both implementing a different feature. If
these features should interact, both teams are directed by
the workflow to implement that interaction if the lock is not
yet taken. Only one of the threads can take the lock. But it
makes sense for both teams to work together on this imple-
mentation, and it does not matter which thread is used.

6. PARAMETRIZED DELTAS

In the inner loops of the workflow, interaction implementa-
tion deltas and conflict resolving deltas are created, some-
times to be applied layer upon layer, with increasingly nar-
row application conditions. This can result in delta struc-
tures such as the one in Figure 3, with one delta for every
possible combination of features. In the worst case, that is
an exponential number: 2" — 1 deltas for n features.

It is theoretically possible in the specification of a product
line that each of those cases requires a distinct solution. In
that case, this complexity is inherent in the problem and
structures like the one in Figure 3 are precisely what we
need for full control. However, in many practical scenarios,
the implementations reconciling these different combinations
follow a very similar pattern which may be much more conve-
niently expressed in the underlying (programming) language
of the deltas D and products P.

To accomodate those scenarios, we propose parametrized
deltas. We now slightly redefine product line implementa-
tions. They are represented by triple (¢, D, <). ¢ is the
core product as before. D® C ® =D is a set of partial
functions (called parametrized deltas), each mapping the
feature configurations it is applicable for to specific deltas.
< C D% x D? is a partial order on the parametrized deltas,
which is intuitively the same as before.

The application function v : D* — P(P(F)) is now
redundant (since v(d) = dom(d) for all d € D?) so we leave
it out of the product line implementation tuple. Though we
will continue to use the v notation for the sake of consistency.

Given a specific product line implementation (¢, D®, <),
the selected delta model for feature configuration F € ®
is (D',<") where D' = {d(F)|de D*AF €~(d)} and
d1(F) <" d2(F) whenever di < dz with F € y(d1) N~y(d2).

If a ‘non-parametrized’ delta x is required, it can still be
simulated by a parametrized delta d which maps every fea-
ture configuration to that delta: VF € v(d) : d(F) = z. So
parametrized deltas are strictly more expressive.

We now alter the four relevant steps of the workflow to use
parametrized deltas instead of regular deltas. But we first
need the following convenient notation: For F' € ®, take F’s
selected delta model (D', <') of product line (¢, D%, <). Tts
sole derivation (assuming there is only one) applied to core
product c is denoted prod(z, F).

6.1 Interaction (-) to implement?

Let us start with the selection procedure in Section 4.3.
Whereas we first had to find a single smallest set I of fea-
tures whose interaction we wanted to implement, we can
now find a set of sets I* C 2 (F), choosing each element by
the same criteria as in Section 4.3, plus this one:

e For all I in I*, and all I’ C I: if the features in I’
should interact (as in Section 4.3), then I' € I* U L.

For the sake of concurrency, we need to record all I € I* in
L in one atomic operation.

|

Figure 4: Example product line with a three-way
interaction implementation or conflict resolution im-
plemented with a parametrized delta d;.

6.2 Implement interaction 7 with new delta -

In the Section 4.4 stage of the workflow, we can now de-
velop a single parametrized delta z to implement all inter-
action cases in I*. 2’s application condition should be wide
enough to encompass all different cases we want to handle,
50 v(z) = Uye» {F €@ |1 CF}. It should be greater in
the partial order < than any existing parametrized deltas
that implement its individual features, as well as any exist-
ing parametrized deltas that implement interactions of strict
subsets of some I € I*.

The parametrized delta z has to be designed such that the
following local guarantees hold:

e For all F' € 7(z), if there is an interaction set I € I*
such that I C F, then z should implement the inter-
actions between the features in I, so: prod(z, F) ET

e 2 should not break existing features, so:
VF € y(z) : YVw < z
prod(w, F) FG = prod(z, F) EG

Compared to the situation of Figure 3, applying this tech-
nique to hypothetical interacting features f, g and h can
result in the product line from Figure 4, reducing the num-
ber of required deltas from an exponential to a constant
number. In a concrete settings we assume that the underly-
ing programming language has access to the chosen feature
configuration. For instance, by exposing the feature names
as boolean constants.

6.3 Conflict (-) to resolve?

Instead of selecting a conflict set C' with the widest joined
application condition, we can now immediately find the largest
set C C D by the same criteria as in Section 4.5.

For the sake of concurrency, we need to record all subsets
C’ C C with |C| > 2 in L¢ in one atomic operation.

6.4 Resolve C conflicts with new delta -
Developing parametrized delta z to resolve the conflicts for
all relevant cases is quite similar to implementing a parama-
trized interaction delta (Section 4.4). Its application condi-
tion should be wide enough to encompass all conflict subsets
of size 2 or larger, so:

Y(z) ={F |y, y2 € C:y1 Zy2 AF € v(y1) Ny(y2) }.

It should be greater in < than all deltas in C. It should be
designed such that the following local guarantees hold:

e z resolves all conflicts for every feature configuration
it is applicable for: Vy1,y2 € C : VF € v(y1) Ny(y2) N
Y(2) : (ya(F), y2(F)) < 2(F)

e Delta z should not break existing features, so:
VF € y(z) : Vw < z
prod(w, F) EG = prod(z, F) EG

In the same way as for Section 6.2, applying this technique
to hypothetical conflicting deltas di, d2 and ds can result in
the product line from Figure 4. Continue to Section 7 for a
concrete example.

7. EXAMPLE

In this section, we briefly illustrate the conflict resolution
process with a concrete example, to give the reader an idea
of how it works in practice. The example is part of the
Editor product line [3]. It implements a code-editor widget
with some optional features:

Syntax Highlighting (SH) can change the text-color.
Error Checking (EC) can underline certain errors.
Keyword Marking (KM) can give keywords a bold font.

Let’s assume that the editor is implemented in an object
oriented programming language and that the only way for
deltas to alter the font is to overwrite the general ‘font ()’
method, which returns the font for a specific part of the text.
So all three feature-implementing deltas will be in conflict
with each other. Figure 3 illustrates this situation exactly
for f =SH, g = EC and h = KM.

Assume that we already have deltas di,d2,ds which im-
plement these features by modifying ‘font()’, and in any
conflict resolving delta, we can use the syntax d;. original ()
to call ‘font ()’ as implemented by d;.

Following the workflow, the conflicts may be resolved as
in Figure 3 with the following four deltas (d4, ..., d7).
Delta d4:

Deltas ds, ds and dg handle the cases in which two features
are selected. Delta d7 handles the case in which all three
features are selected. It seems clear that we can do better.
There is no duplication of behavior, as such, since we call the
original methods of di, d2 and dz. But there is duplication

of code; every line is used at least three times.

Parametrized deltas can be the solution in this case. As-
sume that the names of our features are available in the code
as constant boolean values. These are the parameters of the
following parametrized delta d4’, which can resolve all cases,
placed as in Figure 4:

Font f = new Font ();
if (SH) f.color

if (EC) f.underlined
if (KM) f.bold
return f;

di.original (). color;
d2.original (). underlined;
ds.original (). bold;

Font f = new Font();

f.color = dy.original (). color;
f.underlined = dy.original (). underlined;
return f;

Delta ds:

Font f = new Font ();

f.color = dy.original (). color;

f.bold = ds.original ().bold;

return f;

Delta dg:

Font f = new Font ();

f.underlined = dz.original (). underlined;
f.bold = ds.original ().bold;
return f;

Delta d7:

Font f = new Font ();

f.color = dy.original (). color;
f.underlined = dy.original (). underlined;
f.bold = ds.original ().bold;
return f;

Now the question can arise: when exactly should we use
parametrized deltas? And when we do, how many conflicts
do we want to resolve at the same time?

In general, this is a judgement call. We would follow the
original workflow until we appeared to be resolving a lot
of conflicts (implementing a lot of interactions) in a similar
way, layer upon layer. This is usually an indication that
parametrized deltas can reduce the complexity of the delta
model. Often, this can be anticipated, and parametrized
deltas can be used straight away.

How far should we take this strategy of expressing vari-
ability in-code? Theoretically, a whole product line could be
encoded as a single parameterized delta, in which the code is
annotated with feature conditions to handle all cases. How-
ever, such an annotative approach would not benefit from
the flexibility and structure that delta modeling can pro-
vide. With parametrized deltas, we offer a mix of anno-
tative and compositional approaches [13]. We recommend
using parametrized deltas only where they significantly re-
duce the amount of code or effort, as it is a tradeoff.

8. RELATED WORK

The Delta Modeling Workflow (DMW) is an extension of
the Abstract Delta Modeling (ADM) formalism by Clarke
et al. [3]. This paper works in the same abstract algebraic
setting, and extends the earlier work.

ADM is not the first attempt to model variability of prod-
uct lines [1, 2, 7, 12, 19], but it is the first that inherently
lends itself to a systematic workflow for developing prod-
uct lines from scratch that support automated generation
of all member products with minimal code duplication and
explicit handling of interaction and conflicts.

During the early phases of writing this paper, we started
a collaborative effort in applying DMW to an industrial
case study. The Fredhopper Access Server (FAS) is a soft-
ware product line modeled using the Abstract Behavioral
Specification (ABS) language [4, 10] designed within the
HATS project [8]. A paper was written documenting this
effort [9] and evaluating DMW for practical purposes. It
applies DMW to a concrete domain, in contrast to this pa-
per, which remains abstract. Feedback from modeling the
FAS case study has improved later versions of this paper.

9. CONCLUSIONS AND FUTURE WORK

We have given step-by-step instructions on building a prod-
uct line from scratch, yet remained in an abstract setting.
The instructions in this paper may be instantiated to con-
crete programming or modeling languages. It can then be
used to develop software families with a minimum of code
duplication, ensuring unique software product generation
and offering concrete guidance towards full satisfaction of
feature specifications.

For future work, we plan to give full formal proofs of the
claims in Section 5. As mentioned in Section 8, DMW has
now been evaluated in an industrial setting. Even so, the fea-
ture satisfaction relation warrants further study. We plan to
describe feature specifications as use-cases in software mod-
els, and to explore their impact on the workflow. Another
interesting avenue of research would be a measure of code
duplication applied to product lines produced by DMW,
compared to those produced by other methods. Lastly, this
paper assumes that the product line specification remains
fixed during execution of the workflow. This restriction may
be relaxed in future work.

Acknowledgements

I would like to thank my colleagues Radu Muschevici and
Peter Wong, with whom I applied this workflow to an in-
dustrial case study, improving the formalism in the process.
I would also like to thank the anonymous referees, whose
suggestions helped make this a better paper.

10. REFERENCES

[1] D.S. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Software Eng.,
30(6), 2004.

[2] L. Bettini, F. Damiani, and I. Schaefer. Implementing
Software Product Lines using Traits. In Proc. of
Object-Oriented Programming Languages and Systems
(OOPS), Track of ACM SAC, 2010.

[3] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
delta modeling. In Proceedings of the ninth
international conference on Generative programming
and component engineering, GPCE ’10, pages 1322,
New York, NY, USA, 2010. ACM.

[4] D. Clarke, R. Muschevici, J. Proenga, I. Schaefer, and
R. Schlatte. Variability modelling in the ABS
language. volume 6957, 2011.

[5] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley Longman,
2001.

[6] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. In Conf. on Generative
Programming and Component Engineering(GPCE),
2005.

[7] S. Ducasse, O. Nierstrasz, N. Schirli, R. Wuyts, and
A. Black. Traits: A mechanism for fine-grained reuse.
ACM TOPLAS, 28(2), 2006.

[8] R. Hiahnle. HATS: Highly Adaptable and Trustworthy
Software Using Formal Methods. In ISoLA (2), pages
3-8, 2010.

[9] M. Helvensteijn, R. Muschevici, and P.Y.H. Wong.
Delta Modeling in Practice, a Fredhopper Case Study.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

In Proceedings of the 6th International Workshop on
Variability Modelling of Software-intensive Systems,
Leipzig, Germany, January 25-27 2012, ACM
International Conference Proceedings Series. ACM,
2012.

E. Broch Johnsen, R. Hihnle, J. Schifer, R. Schlatte,
and M. Steffen. ABS: A core language for abstract
behavioral specification. In Bernhard Aichernig,
Frank S. de Boer, and Marcello M. Bonsangue,
editors, Proc. 9th International Symposium on Formal
Methods for Components and Objects (FMCO 2010),
Lecture Notes in Computer Science. Springer-Verlag,
2011.

K.C. Kang, S. Cohen, J. Hess, W. Nowak, and

S. Peterson. Feature-Oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-021, Carnegie Mellon University
Software Engineering Institute, 1990.

C. Késtner and S. Apel. Type-Checking Software
Product Lines - A Formal Approach. In ASE, pages
258-267. IEEE, 2008.

C. Késtner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE, pages 311-320,
2008.

C. Késtner, S. Apel, S.S. ur Rahman, M. Rosenmiiller,
D. Batory, and G. Saake. On the impact of the
optional feature problem: Analysis and case studies.
In Proc. Int’l Software Product Line Conference
(SPLC). SEI, 2009.

K. Pohl, G. Bockle, and F. Van Der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

I. Schaefer. Variability Modelling for Model-Driven
Development of Software Product Lines. In Intl.
Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2010), 2010.

I. Schaefer, L. Bettini, V. Bono, F. Damiani, and

N. Tanzarella. Delta-oriented Programming of
Software Product Lines. In SPLC, volume 6287 of
LNCS, pages 77-91. Springer, 2010.

I. Schaefer and F. Damiani. Pure Delta-oriented
Programming. In Workshop on Feature Oriented
Software Development 2010.

I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A
Model-Based Framework for Automated Product
Derivation. In Proc. of Workshop in Model-based
Approaches for Product Line Engineering (MAPLE
2009), 2009.

P. Schobbens, P. Heymans, and J. Trigaux. Feature
diagrams: A survey and a formal semantics.
Requirements Engineering, IEEE International
Conference on, 0:139-148, 2006.

A. van Deursen and P. Klint. Domain-specific
language design requires feature descriptions. Journal
of Computing and Information Technology, 10(1):1-18,
2002.

